Variance-optimal hedging for processes with stationary independent increments
نویسندگان
چکیده
منابع مشابه
Variance Optimal Hedging for continuous time processes with independent increments and applications
For a large class of vanilla contingent claims, we establish an explicit Föllmer-Schweizer decomposition when the underlying is a process with independent increments (PII) and an exponential of a PII process. This allows to provide an efficient algorithm for solving the mean variance hedging problem. Applications to models derived from the electricity market are performed.
متن کاملVariance Optimal Hedging for discrete time processes with independent increments. Application to Electricity Markets
We consider the discretized version of a (continuous-time) two-factor model introduced by Benth and coauthors for the electricity markets. For this model, the underlying is the exponent of a sum of independent random variables. We provide and test an algorithm, which is based on the celebrated Föllmer-Schweizer decomposition for solving the mean-variance hedging problem. In particular, we estab...
متن کاملCharacterization of unitary processes with independent and stationary increments
This is a continuation of the earlier work [13] to characterize stationary unitary increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with a technical assumption on the domain of the generator, unitary equivalence of the processes to the solution of Hudson-Parthasarathy equation is proved.
متن کاملVariance optimal hedging for continuous time additive processes and applications
For a large class of vanilla contingent claims, we establish an explicit Föllmer-Schweizer decomposition when the underlying is an exponential of an additive process. This allows to provide an efficient algorithm for solving the mean variance hedging problem. Applications to models derived from the electricity market are performed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Probability
سال: 2006
ISSN: 1050-5164
DOI: 10.1214/105051606000000178